Generalized Dyck equations and multilabel trees
نویسندگان
چکیده
New topological operations are introduced in order to recover the generalized Dyck equations presented by D. Arquès et al. in another way for the generating functions of maps and colored maps, by decomposing maps topologically and bijectively. By repeatedly applying the operations which made it possible to reveal the generalized Dyck equations for the successive transformed maps, oneto-one correspondences are obtained between maps (colored or not) of indeterminate genus and trees (colored or not) whose vertices can be labelled with several labels, following rules that we will define. These bijections provide us with a coding of these maps. Résumé De nouvelles opérations topologiques sont introduites afin de nous permettre de retrouver les équations de Dyck généralisées aux cartes (coloriées ou non) de genre quelconque données par D. Arquès et al., par des méthodes topologiques et bijectives de décomposition des cartes. En appliquant plusieurs fois les opérations qui nous ont permis de retrouver les équations de Dyck généralisées aux cartes successives obtenues, on obtient des bijections entre cartes (coloriées ou non) de genre quelconque et des arborescences (coloriées ou non) où les sommets peuvent être étiquetés par plusieurs étiquettes suivant des règles que nous définirons. Ces bijections nous fournissent un codage de ces cartes. © 2005 Elsevier B.V. All rights reserved.
منابع مشابه
Ranking and Unranking of a Generalized Dyck Language
Given two disjoint alphabets T and T ] and a relation R T T ] , the generalized Dyck language D R over T T ] consists of all words w 2 (T T ]) ? which are equivalent to the empty word " under the congruence deened by x y " mod for all (x; y) 2 R. If the Dyck words are arranged according to the lexicographical order, then ranking means to determine the rank, i. e. the position, of a Dyck word. U...
متن کاملReturns, Hills, and t-ary Trees
A recent analysis of returns and hills of generalized Dyck paths is carried over to the language of t-ary trees, from which, by explicit bivariate generating functions, all the relevant results follow quickly and smoothly. A conjecture about the (discrete) limiting distribution of hills is settled in the affirmative.
متن کاملBijections for a class of labeled plane trees
We consider plane trees whose vertices are given labels from the set {1, 2, . . . , k} in such a way that the sum of the labels along any edge is at most k + 1; it turns out that the enumeration of these trees leads to a generalization of the Catalan numbers. We also provide bijections between this class of trees and (k + 1)-ary trees as well as generalized Dyck paths whose step sizes are k (up...
متن کاملComparing multilabel classification methods for provisional biopharmaceutics class prediction.
The biopharmaceutical classification system (BCS) is now well established and utilized for the development and biowaivers of immediate oral dosage forms. The prediction of BCS class can be carried out using multilabel classification. Unlike single label classification, multilabel classification methods predict more than one class label at the same time. This paper compares two multilabel method...
متن کاملRigged Configurations and Catalan Objects: Completing a Commutative Diagram with Dyck Paths and Rooted Planar Trees
We construct an explicit bijection between rigged configurations and rooted planar trees, which we prove is the composition of the the bijection defined by Kerov, Kirillov, and Reshitikhin between rigged configurations and Dyck paths and the bijection between Dyck paths and rooted planar trees defined by the planar code.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 298 شماره
صفحات -
تاریخ انتشار 2005